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UNSTEADY MOTION OF A THIN FOIL IN AN
INCOMPRESSIBLE FLUID

D. Homentcovschi

1. Introduction /537%

The study of the motion of a thin airfoll in a nonviscoéus,
incompressible fluld was the object of numerous investigations
(for a brief bibliography on this field, consult the textbook
of fluid mechanics by Academiclan Caius Jacob [1]). In order
to%explain the variation in circulation time of the fluid
veloclty about the ailrfoll, all the authors base themselves on
W. Birmbaum's hypothesis, according to which there is a con-
tinuous formation of vortices at the trailing edge of the airfoil.
This implies the existence of a discontinuity line of velocities
in that’part of the Ox axis which the airfoll crosses in its
motion.

We shall attempt a slightly different approach to the prob=
lem. We shall use the equations of fluid mechanics written in
terms of distributions (2), which will allow us to avolid reliance
on the hypothesis dealing with the existence and the shape of
the discontinuity surface. The small-perturbation hypothesis
used by us endbles us to linearize the eguations of motion, the
limiting conditions, and permits us to use the latter in the pro-
Jection of the airfoll on the 0Ox axis. Let us note that this
hypothesis was used in previous studies dealing with this problem,
since otherwise the jump conditlons resulting from the theorem of
consérvation of the momentum would not be verified on the dis-
continuity surface.

¥ Numbers in the margin indicaterpagination in the foreign text.



Subsequently, a representation is obtained for the velocity
field which has all the characteristics of thenpreviocusly deter-
mined solution to this problem. Thus, the existence of the
discontinulty line of veloclties on the segment (1 - s(t), 1)
is a result of the established formula and its posulation is no /538

longer necessary. Consequently, W. Birnbaum's model is the only
possible model for the unsteady motion of an incompressible//fluld.

The general case of the airfoll with finite'thickness is
also discussed in this study. If the area of the airfoll changes
in time, it is shown that there is a source line superposed on
the voltage line on segment (1 - s(t}, 1) of the axis 0Ox.

2. Formulation of the Problem

Let us eonsider a thin alrfoil profile whose equations are
glmsi:(sf‘; £), -1 Bl 620 (1)

with regard to a trihédron bound to the airfoll, which moves with
a velocity %e(t) in an incompressible fluid which is nonviscous
and fills the whole plane. Let us admit that the directlon of
axis Ojx1 coincides with the direction of the airfoil speed,
while its sense 1s opposite to the sense of the vector. The
unsteady nature of the motion is due both tc the fact that the
vector %e(t) has a time-variable modulus, and due tTo vibrations
of the airfoil given by Egq. (1). We shall relate the motion of
the gluld to a fixed trihédron Oxyz which is none other than the
positionit = 0 of the 01x1¥123 trihedron. We thus obtain
&=z +€ Flt) @iz o+ o),
-3 N (2)
P =9 -

The equations 1n terms of distributlon characterizing the motion

of the f£luid have the following form:
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In these equatlons v(x,y,t) dnd p(x,y,t) denote the per-
turbations of velocity and pressure, respectively, =e&(x;t) ')
and sntxyt)-are magnitudes which characterize the resistance
to forward motion and the 1lifting force which acts on the
airfoil, .and

. for —l—g<E<l—8
{0 for z€{(—wj;—1— Ul —ag + ®)

r

1 8{z, t) =

is a function which is characteristic for the projection of the
alrfoil profile on the Ox axis. We shall write the limiting
conditions of the problem in a linearized form i
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where y = e¥,(%y;:;t) = e?t(x + s;t) are the equations of the two
arches of the profile with regard to the system of fixed axes.

Applying the Laplace transform with regard to time and the
Fourier transform with regard to space varilables of systems (3)
and (4), the following egquations arecbbtained:
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Hence we obtain
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Or considering the complex velocity /540
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where z = x + iy. The explicit expression of the complex
velocity will be
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The last term of Eq. (8) can be seen immeddéately to be nothing
else than v(x,y,0), so that we have
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3. Properties of the Function f(z;t)

1. The function f(z;t) 1s a olomorphlc function of the
variable v in the complex plane with section [-1 - s (t); +1]
on the real axis. Indeed, function f(z;t) is expressed by a
double integral which extends over the cross-hatched area in
Fig. 1. By changing the order of integration we have:

fies 0 = y=if  HED

23 ety {T — E)Bi‘ (9%

The expression of H(E,t) results from the integral with respectt.
to t. A function with the expression (9)}) is evidently olo-
morphic in the complex plane with section [-1 - s(t), 1].

2. The function f(z;t) behaves at large distances as 2—2.
Thus, the condition of conservation of the circulation imposed by
Thompson's theorem 1s fulfilled.
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Fig. 1.

3. The derivative with respect to time of f(z;t) is an

clomorphic function at the ocutside of the alirfoil.

Indeed we
have

il ) (z;t) m_,l_s 1~ (€, ) —icl(E, t)da \
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so that we'mew:keé thathbhe:above statement is evident

4., Soluticn of the Problem
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We shall use the limiting condition in order to determine

the functions n(x;t) and Z(x;t), which enter into formula (9).
We shall write function f(zj;t) in the form:
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On segments (-, -1 - s(t)], [1, + =) we have

‘ Em {fil=; O} = 0,
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It also results from Egq. (10) that:
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The expressions lead to the conditions:

I {£i23 D)yere = Ty(3) : |
| ce(l —e(t); 1), | (14)

| Re {filz; Dyoso = Usde)y =,
Uy(x) and Up(x) are momentarily arbitmary functions. Likewise,
using the above notations, the limiting conditions (5) assume

the form:
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{(We hizve. assumed that the airfoil profile starts at rest with
t = 0. The general case should be simlilarly treated.)

Taking into account Egs. (12) and (14), the following
limiting conditions are obtalned from these expressions in order
to determine the functions fy(z;t) and fs(zit):
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Functfon-£iézm;t) 1s thus a solution for a Dirichlet problem for
the upper semi—plane: YR PR
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Function Ul(E) will be determined on condition that function
f1(tsyz) behaves at infinity like z“2, which leads to the integral

equation:
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where we designated the area of the alrfoil by a(s).
From expression (21) we obtain by derivation
| Oyl — g) = 388 (21)
P de

We shall note that function Uq(x) 1s different from zero only if
the area of the alrfoil changes during the motion, Physically,
this describes the intensity of a source situated on the segment
(1l - s, 1) on axis 0x. Once we have determined the functicn
fl(z;t) from expression [3]:
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Function I(x3;t) is also obtained (taking into account Kutta-
Jukowsky's condition).

The problem under limiting conditions for determining the
function f2(z;t) is identical to the limifing problem which
determines the unsteady motion of the thin airfeoil without
thickness, according to W. Birnbaum's hypothesis. Its solution
is given, for example, in [1]1, and 1t leads to the integral
ofi . Wagner's equation for determining the function Up(x).

From the expression
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function n(x;t) is also obtained.
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